Five embeddings of one simple group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obstructions for simple embeddings

Suppose that K ⊆ G is a graph embedded in some surface and F is a face of K with singular branches e and f such that F ∪ ∂F is homeomorphic to the torus minus an open disk. An embedding extension of K to G is a simple embedding if each K-bridge embedded in F is attached to at most one appearance of e and at most one appearance of f on ∂F . Combinatorial structure of minimal obstructions for exi...

متن کامل

Embeddings of Simple Modular Extended RDF

The Extended Resource Description Framework has been proposed to equip RDF graphs with weak and strong negation, as well as derivation rules, increasing the expressiveness of ordinary RDF graphs. In parallel, the Modular Web framework enables collaborative and controlled reasoning in the Semantic Web. In this paper we exploit the use of the Modular Web framework to specify the modular semantics...

متن کامل

Group Embeddings: Geometry and Representations

A reductive monoid M is the Zariski closure of a reductive group G. We will discuss three basic decompositions of of M , each leading to a finite poset via Zariski closure inclusion: 1. The decomposition of M into G × G-orbits. The associated poset is the cross-section lattice Λ. This is a generalization of the face lattice of a polytope. While in general the structure of Λ is quite complicated...

متن کامل

Rank-one group actions with simple mixing Z-subactions

Let G be a countable Abelian group with Zd as a subgroup so that G/Zd is a locally finite group. (An Abelian group is locally finite if every element has finite order.) We can construct a rank one action of G so that the Z-subaction is 2-simple, 2-mixing and only commutes with the other transformations in the action of G. Applications of this construction include a transformation with square ro...

متن کامل

Algebraic Monoids and Group Embeddings

We study the geometry of algebraic monoids. We prove that the group of invertible elements of an irreducible algebraic monoid is an algebraic group, open in the monoid. Moreover, if this group is reductive, then the monoid is affine. We then give a combinatorial classification of reductive monoids by means of the theory of spherical varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2013

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2013-05768-6